Autophagy Maintains the Function of Bone Marrow Mesenchymal Stem Cells to Prevent Estrogen Deficiency-Induced Osteoporosis
نویسندگان
چکیده
Rationale: The impaired function of endogenous bone marrow mesenchymal stem cells (BMMSCs) is a determinant in the development of osteoporosis (OP). Recent researches have proved that autophagy plays an important role in maintenance of skeletal phenotype. However, whether autophagy affects the development of OP through regulating the function of BMMSCs remains elusive. Methods: Ovariectomy (OVX)-induced OP model and sham model were established in 8-week-old C57 mice. The differentiation and immunoregulation properties of BMMSCs from two models were examined by osteogenic/adipogenic induction in vitro and treatment of a dextran sulfate sodium (DSS)-induced mice colitis model in vivo. We evaluated autophagy activity in sham and OVX BMMSCs by quantitative real time-polymerase chain reaction (qRT-PCR), western blotting, laser confocal microscopy and transmission electron microscopy (TEM). Finally, to testify the effects of rapamycin, short hairpin RNA (shRNA) -BECN1 (shBECN1) and shRNA-ATG5 (shATG5), we performed Alizarin Red staining and Oil Red O staining to detect lineage differentiations of BMMSCs, and carried out micro-CT, calcein staining and Oil Red O staining to assess the skeletal phenotype. Results: BMMSCs from OVX-induced OP model mice exhibited decreased osteogenic differentiation, increased adipogenic differentiation and impaired immunoregulatory capacity. Furthermore, autophagy decreased both in bone marrow and BMMSCs of osteoporotic mice. Importantly, regulation of autophagy directly affects the functions of BMMSCs, including differentiation and immunoregulatory capacities. Moreover, treatment with rapamycin rescued the function of endogenous BMMSCs and attenuated the osteoporotic phenotype in OVX mice. Conclusion: Our findings suggest that autophagy regulates the regenerative function of BMMSCs and controls the development of OP. The restoration of autophagy by rapamycin may provide an effective therapeutic method for osteoporosis.
منابع مشابه
Ethyl Acetate Extract of Licorice Root (Glycyrrhiza glabra) Enhances Proliferation and Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells
Glycyrrhiza glabra has been used as a flavoring and sweetener agent, in addition to its therapeutic properties. It is rich in phytoestrogen and may prevent osteoporosis caused by estrogen deficiency; however, there is no evidence for its effects on proliferation and osteogenesis in mesenchymal stem cells. So, we were encouraged to investigate whether the ethyl acetate extract of licorice root a...
متن کاملEthyl Acetate Extract of Licorice Root (Glycyrrhiza glabra) Enhances Proliferation and Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells
Glycyrrhiza glabra has been used as a flavoring and sweetener agent, in addition to its therapeutic properties. It is rich in phytoestrogen and may prevent osteoporosis caused by estrogen deficiency; however, there is no evidence for its effects on proliferation and osteogenesis in mesenchymal stem cells. So, we were encouraged to investigate whether the ethyl acetate extract of licorice root a...
متن کاملBiochemical and morphological changes in bone marrow mesenchymal stem cells induced by treatment of rats with p-Nonylphenol
Objective(s):In previous investigations, we have shown para-nonylphenol (p-NP) caused significant reduction of proliferation and differentiation of rat bone marrow mesenchymal stem cells (MSCs) in vitro. In this study, we first treat the rats with p-NP, then carried out the biochemical and morphological studies on MSCs. Materials and Methods: Proliferation property of cells was evaluated with t...
متن کاملAutophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure
Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival. This study aims to investigate the regenerative potentia...
متن کاملCadmium treatment of rats caused impairment of osteogenic potential of bone marrow mesenchymal stem cells: a possible mechanism of cadmium related osteoporosis
Background: The mechanism of cadmium induced osteoporosis is not well understood, so in this study, we examined the toxicity of bone marrow mesenchymal stem cell (MSCs) following treatment of rats with CdCl2 in drinking water, to revile the effect of this chemical on differentiation potential of MSCs. Methods: At the end of third passage, MSCs were grown in the osteogenic medium for 21 days....
متن کامل